If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x+17=0
a = 2; b = -16; c = +17;
Δ = b2-4ac
Δ = -162-4·2·17
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{30}}{2*2}=\frac{16-2\sqrt{30}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{30}}{2*2}=\frac{16+2\sqrt{30}}{4} $
| 6(6-5n)=-144 | | 2x/x+1=4 | | x2-5x+6400=0 | | 2(m–16)=44 | | 14x–15=13 | | 45=5-4v | | 2/5c-12.2=1.8 | | 4t+18=18 | | -6(y+5)=12 | | 0.3-2x=-0.92 | | 2/5x-5/8x=5/12 | | -3(x-3)^2+108=0 | | 15s+8.1-2s=8.1-s | | 15s+8.1-2s=8 | | -20(x-3)^2+180=0 | | 1/2x+10=1/4x+108 | | -5/8a-20=-10 | | ×+3y=18 | | 9w–7=4w–17 | | 6k+4=3k+31;9 | | (5/2x)-4=6 | | 3x/4=15/16 | | 5.51=0.05y+-9 | | 10-9x=-89 | | 13/8y+y=190 | | 7x+3(4-3x(=5 | | 105=-7(1+7x) | | (5+y)11=1400 | | (3.5-x)x8=4x | | (4+h)+(h+7)=29 | | T=3s+3.34 | | 10x+3(2x+1)=-43+2x |